CEAS - 832 Simple Performance Bounds for Multicore and Parallel Channel
نویسندگان
چکیده
A simple modification of existing divisible load scheduling algorithms, boosting link speed by M for M parallel channels per link, allows time optimal load scheduling and performance prediction for parallel channel systems. The situation for multicore models is more complex but can be handled by a substitution involving equivalent processor speed. These modifications yield upper bounds on such parallel systems’ performance. This concept is illustrated for ideal single level (star) tree networks under a variety of scheduling policies. Less than ideal parallelism can also be modeled though mechanisms of inefficiency require further research.
منابع مشابه
Simple Performance Bounds for Multicore and Parallel Channel Systems
A simple modification of existing divisible load scheduling algorithms, boosting link speed by M for M parallel channels per link, allows time optimal load scheduling and performance prediction for parallel channel systems. The situation for multicore models is more complex but can be handled by a substitution involving equivalent processor speed. These modifications yield upper bounds on such ...
متن کاملGaussian Z Channel with Intersymbol Interference
In this paper, we derive a capacity inner bound for a synchronous Gaussian Z channel with intersymbol interference (ISI) under input power constraints. This is done by converting the original channel model into an n-block memoryless circular Gaussian Z channel (n-CGZC) and successively decomposing the n-block memoryless channel into a series of independent parallel channels in the frequency dom...
متن کاملCapacity Bounds and High-SNR Capacity of the Additive Exponential Noise Channel With Additive Exponential Interference
Communication in the presence of a priori known interference at the encoder has gained great interest because of its many practical applications. In this paper, additive exponential noise channel with additive exponential interference (AENC-AEI) known non-causally at the transmitter is introduced as a new variant of such communication scenarios. First, it is shown that the additive Gaussian ch...
متن کاملEnergy-Efficient and High-Performance Processing of Large-Scale Parallel Applications in Data Centers
When a multicore processor in a data center for cloud computing is shared by a large number of parallel tasks of a large-scale parallel application simultaneously, we are facing the problem of allocating the cores to the tasks and schedule the tasks, such that the system performance is optimized or the energy consumption is minimized. The motivation of the present paper is to investigate energy...
متن کاملExtending Amdahl's Law for Multicores with Turbo Boost
Rewriting sequential programs to make use of multiple cores requires considerable effort. For many years, Amdahl’s law has served as a guideline to assess the performance benefits of parallel programs over sequential ones, but recent advances in multicore design introduced variability in the performance of the cores and motivated the reexamination of the underlying model. This paper extends Amd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010